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Exact Magnetic Diffusion Soutions for Magnetohydrodynamic Code 
Verification (U)  

David S. Miller 

Lawrence Livermore National Laboratory, Livermore, California,94551  

In this paper, the authors present several new exact analytic space and time dependent 
solutions to the problem of magnetic diffusion in R-Z geometry.  These problems serve to 
verify several different elements of an MHD implementation:  magnetic diffusion, external 
circuit time integration, current and voltage energy sources, spatially dependent 
conductivities, and ohmic heating. The exact solutions are shown in comparison with 2D 
simulation results from the Ares code. (U) 

 
Introduction 
With the continued growth of interest in 
pulsed power there is a corresponding 
growth in the need for simulation codes to 
accurately predict experimental results. 
And magnetohydrodynamics (MHD) is an 
important area of physics in some of these 
experiments. For a simulation code to be 
truly useful tool, experimenters and 
designers must have high level of 
confidence in the code’s accuracy.  And 
one very important step in building said 
confidence is verification – the 
determination that the simulation code is 
correctly and accurately solving the 
intended equations by direct comparison 
with known solutions. In this paper we 
derive a number of new exact solutions 
which may prove useful for just this 
purpose. The problems are all pure 
magnetic diffusion – there is no 
hydrodynamic motion involved. Also, all 
of the problems are limited to R-Z 
cylindrical symmetry. The resulting 
solutions are then explicitly dependent on 
the time t and radius r.  

The Equations 
To begin we first derive the magnetic 
diffusion equation for the cylindrical 
geometry and symmetry in which we are 
interested. We adopt the approximation 
that the fields are slowly changing with 
respect to the speed of light and hence 
drop the time derivative in Ampere’s law. 

This is sometimes referred to as the MHD 
approximation. Then we have  

Ampere’s law: 

jBx
rrr
π4=∇  1.

Faraday’s Law:         
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∂
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t
B rr
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 2.

and Ohm’s Law: 
Ej
rr

σ=  3.

Combining these three equations we find 
that 
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We wish to apply this equation to the 
geometry as shown in Fig 1. This is a 
cylindrically symmetric conductor (wires 
and hollow cylinders) of outer radius Rw 
and length Z. As part of the computational 
problem, the conductor is surrounded by a 
cylindrical region of vacuum which 
extends out to radius RB. For the 
symmetry we are interested in, the 
magnetic field points solely in the angular 
direction and is only a function of radius 
and time. Then Eq. 4 reduces  
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 5.

This is the magnetic diffusion equation for 
which we will seek solutions. Our 
diffusion unknown is  
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I(r,t) = rB(r,t). The current density 
provides Ohmic heating via the material 
temperature equation 

21 j
t
TCv σ

ρ =
∂
∂  6.

T is the material temperature, ρ is the 
mass density and Cv is the specific heat.  
 

Figure 1 
 

Boundary Conditions 
In all problems considered here, we have 
that the boundary condition at the center 
of the conductor is B(r=0,t) = 0 (or in the 
case of a hollow vacuum filled cylinder, 
zero at the inner surface of the conductor). 
The boundary conditions on the ends of 
the cylinder are such that the normal 
magnetic flux is zero. This eliminates the 
need to consider edge effects and 
preserves the symmetry of the solution. 
The boundary condition at the outer 
surface will depend on whether we drive 
the problem with a current source or a 
voltage source and the verification 
solutions will be divided into two groups 
based on this difference. 
With a current source, the value of the 
total current is part of the problem 
specification. If the total current is S(t), 
then we know that the value of the 
magnetic field everywhere exterior to the 
conductor is easily computed from the 
integral form of Ampere’s law                  

r
tStrB exterior
)(2),( =  7.

This then provides the boundary condition 
on the surface                            

)(2),( tStRI w =  8.
Equation 8 is always true regardless of the 
type of source, but only for current 
sources does it alone specify the boundary 
condition on the outer surface of the 
conductor. For problems where we have 
some external circuit specification 
providing a voltage source, we don’t a 
priori know S(t) and so the boundary 
condition at the surface of the conductor is 
more complicated. To derive it we apply 
Faraday’s law of induction to the exterior 
vacuum region. Faraday’s law applied to 
the exterior vacuum region states          

∫ ∫ •=•
−

exterior exterior

ldEAdB
dt
d rrrr  9.

where the line integral in Eq. 9 is taken in 
the counter clockwise direction. From Eq. 
7 we know that              
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10.

And from the symmetry we know that the 
electric field only points in the z direction 
so that 

),(),( tRrZEtRrZEldE Bw
vacuum

=−==•∫
rr  11.

At the surface of the conductor we can get 
the electric field from I(r,t) as  
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which in our geometry reduces to                                  
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What about the electric field at r=RB? 
This is just the voltage applied to our 
problem from the external circuit divided 
by the length of the load   

Z
V
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B =),(  14.

Putting together Eqs. 9-13 we have     
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So, Eq. 8 provides our exterior surface 
boundary condition when the problem is 
driven by a current source, and Eq. 15 
when it is driven by a voltage source.  
 

Solution Method 
In each case the solution method is 
generally the same: take the Laplace 
transform in the time variable of the 
magnetic equation Eq. 5, and the relevant 
boundary conditions, solve the resulting 
ordinary differential equation in the radius 
variable, then perform the inverse Laplace 
transform to obtain the complete magnetic 
field solution. Then, the current density is 
derived from the Magnetic field B via Eq. 
1, Ampere’s law. For voltage driven 
problems, the total current is derived from 
the magnetic field via Eq. 7.  If the heat 
capacity and electrical conductivity are a 
constant, the Ohmic heating can then be 
computed by time integrating Eq. 6, 
resulting in an exact solution for the 
material temperature as well. 

Current Source Solutions 
Solution 1: Consider a solid cylindrical 
conductor of radius Rw, driven by a 
current source  

tbetbtbStS /2/5
0 )3/2()/()( −−=  16.

 where b is a constant. Use a spatially 
dependent conductivity given by 

2
0)(

r
r

σ
σ =  17.

Define 04πσ=D . Then the magnetic 
field and current density are given by 
Equations 18 and 19. 

 

For a specific example, set S0=1.2, b=0.5, 
Rw=1.0 cm, and σ0=1.0 cm/milliOhm. In 

Figures 2 and 3 we show the solutions for 
the magnetic field and current densities at 
r = 0.5*Rw (curves A and C) and r=0.9* 
Rw (curves B and D). The red curves 
represent the exact solution and the blue 
curves are the Ares result.  
  

 
Figure 2: Magnetic Field, MegaGauss 
versus μs for solution 1 
 

 
Figure 3: Current Density, 
DegaMegaAmps/cc versus μs for solution 1 
 
 
 
 

 

 
Solution 2: Consider a solid cylindrical 
conductor of radius Rw, driven by constant 
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current S(t) = S0 and possessing constant 
electrical conductivity σ  and specific heat 
Cv.  Now we can also solve for the Ohmic 
heating. Define πσ4=D  and 

DRb w= . Let yn be the nth nonzero 
roots of J1(y)=0. Then the magnetic field, 
current density and material temperature 
are given by Eqs. 20, 21 and 22.  
 

 
Figure 4: Magnetic Field, MegaGauss 
versus μs for solution 2 
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As a specific example, use radius Rw = 1.0 
cm, σ = 1/milliohm/cm, specific heat Cv = 
1.0 Eu/gm/KeV, density ρ = 8.93 gm/cc, 

S0 = 1.0 DecaMegaAmps, initial 
temperature T0 = 1.0e-3 KeV. The results 
are shown in Figures 4, 5 and 6. The red 
curves represent the exact solution and the 
blue curves are the Ares result. 
The edits are taken at r=0.2cm (curves A 
and E), r=0.5cm (curves B and F), 
r=0.9cm (curves C and G), and r=0.95cm 
(curves D and H).   
 

 
Figure 5: current density in 
DecaMegaAmps/cc versus μs for solution 2 

 
Figure 6: Material temperature in KeV 
versus μs for solution 2 

 
 

 

Voltage Source Solutions 
Solution 3: Consider a solid cylindrical 
conductor of radius Rw, driven by a 
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voltage source representing the external 
circuit shown in Figure 7, where V is a 
constant voltage, L is a constant inductor, 
and R is a constant resistor.   
 
 

Figure 7 
 
Again use a spatially dependent 
conductivity given by 2

0 /)( rr σσ = . 
Define 04πσ=D , )2/()/ln( ZLRR wB +=β . 
Require that )2/( βDZR = . Then the 
magnetic field, current density and total 
current are given by Eqns. 23, 24 and 25. 

 

 

As a specific example, set V=10.0 
decakilovolts, σ0=1.0 cm/milliOhm, 
Rw=1.3cm, RB=1.5cm. The inductance and 
resistance are set to a specific value which 
satisfies the requirements of the problem 

but still allows them to have the same 
value. This is  

( ))/ln(/1)/ln( 2
WBWB RRDRRZRL −+== 26.

In figures 8, 9 , and 10 we plot the exact 
solutions and the Ares simulations results. 
The edits are taken at r=0.2cm (curves A 
and E), r=0.5cm (curves B and F), 
r=0.9cm (curves C and G), and r=0.95cm 
(curves D and H).  The red curves 
represent the exact solution and the blue 
curves are the Ares result. 
 

 
Figure 8: Magnetic field in megaGauss 
versus μs for solution 3 
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Figure 9: current density in 
decaMegaAmps/cc verus μs for solution 3 
 

 
Figure 10: Total current in decaMegaAmps 
versus μs for solution 3 
 
Solution 4: For this solution we use the 
same circuit driven picture as in Figure 7 
but let the conductivity now be a constant, 
σ=const.  Define πσ4=D , 2/R=γ , 

DRb w= , )/ln(2/ wB RRZL +=β , 

and )/( wDRZ=δ . Let xn be the nth root 
of  
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Now define nn xby =  and 
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With these definitions, the magnetic field, 
current density and total current are given 
by equations 29, 30, and 31. 
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31.

As a specific example, use conductor 
radius Rw = 1.3 cm, outer radius of the 
vacuum RB = 1.5 cm, conductivity σ = 
0.1/milliOhm/cm, conductor length Z = 2 
cm, inductance L = 0.13 nanoHenries, 
resistance Rs= 0.13 milliOhms, voltage V= 
10.0 decaKiloVolts. Figures 11 and 12 are 
plots of the magnetic field and current 
density solutions at three different radii: 
r=0.1Rw (curves A and D),  r=0.5Rw 
(curves B and E),  r=0.9Rw (curves C and 
F). Figure 13 is the total current as a 
function of time (in μs). The red curves 
represent the exact solution and the blue 
curves are the Ares result. 
 

 
Figure 11: Magnetic field in megaGauss 
versus μs for solution 4 
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Figure 12: current density in 
decaMegaAmps/cc verus μs for solution 4 
 

 
Figure 13: Total current in decaMegaAmps 
versus μs for solution 4 
 

Solution 5: For this solution we use the 
same problem setup as in solution 4 but 
now add a constant capacitor C in series 
with the other circuit elements.  Again use 

πσ4=D , 2/R=γ , DRb w= , 
)/ln(2/ wB RRZL +=β , and 

)/( wDRZ=δ . But let us also define 
)2/(1 C=α . Proceeding as in solution 4, 
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Define nn xby =  and 
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With these definitions, the magnetic field, 
current density and total current is given 
by equations 34, 35, and 36. 
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Solution 5 has two different modes of 
operation - the critically damped and 
oscillatory damped modes. Which mode 
one sees depends on the nature of the 
roots of equation 32. If all of the roots are 
real then you get the critically damped 
mode. If any of the roots are complex, 
then you get the damped oscillatory 
behavior.   
For a critically damped example, use the 
following parameters: Rw = 1.3 cm, RB = 
1.5 cm, σ = 0.1/milliOhm/cm, Z = 2 cm,  
L = 10.0 nanoHenries, R= 1.0 milliOhms, 
voltage V= 10.0 decaKiloVolts, C=5.0 
milliFarads. For these parameters all of 
the roots xn are real and positive.  
Figures 14 and 15 are plots of the 
magnetic field and current density 
solutions at three different radii: r=0.1Rw 
(curves A and D),  r=0.5Rw (curves B and 
E),  r=0.9Rw (curves C and F). Figure 16 
is the total current as a function of time 
(in μs). The red curves represent the 
exact solution and the blue curves are the 
Ares result. 
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Figure 14: Magnetic field in megaGauss 
versus μs for solution 5, critically damped 
 

 
Figure 15: current density in 
decaMegaAmps/cc verus μs for solution 5, 
critically damped 
 

 
Figure 16: Total current in decaMegaAmps 
versus μs for solution 5, critically damped 
 
To get an oscillatory damped example, 
just change the value of the capacitor to 
C=0.1 milliFarads. Now the first two roots 
of equation 32 are complex (they are the 
complex conjugates x1= 
0.20889+0.90466i and x2= 0.20889-

0.9046i) and all the other roots are real 
and positive definite. Again we plot the 
magnetic field and current density 
solutions at three different radii: r=0.1Rw 
(curves A and D),  r=0.5Rw (curves B and 
E),  r=0.9Rw (curves C and F). Figure 19 
is the total current as a function of 
time. Again, the red curves represent the 
exact solution and the blue curves are the 
Ares result. 
 

 
Figure 17: Magnetic field in megaGauss 
versus μs for solution 5, oscillatory 
 

 
Figure 18: current density in 
decaMegaAmps/cc verus μs for solution 5, 
oscillatory 
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Figure 19: Total current in decaMegaAmps 
versus μs for solution 5, oscillatory 

Conclusions 
These verification problems have proven 
useful to the Ares team for building 
confidence in our MHD implementations. 
Notice that while all of the Ares numerical 
solutions provided were run in a 2D r-z 
mode, the solutions are equally valid run 
in 3D. These problems were in fact also 
used to verify the 3D mhd implementation 
in Ares, as well as the 2D. And while it 
may seem that these problems are very 
similar to each other, they each combine 
different elements of difficulty in 
implementation and/or solution. Together 
they give a good base of coverage for 
basic magnetic diffusion (with Ohmic 
heating) verification. Hopefully other 
code groups will find these problems 
useful as well.  
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